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FOREWORD

The Air Force Wright Aeronautical Laboratories (AFWAL) has an active

technology program to improve the performance of manned ejection seat escape

systems. The operational performance envelope of current ejection systems is

deficient with respect to the operational flight envelope of current Air Force

inventory aircraft. This report documents preliminary investigations directed

toward expanding the performance capabilities of an ejection seat by

incorporating control of the applied thrust vector upon the ejection seat.

This program was developed as part of an in-house effort conducted by

personnel of the Crew Escape and Subsystems Branch (FIER), Vehicle Equipment

Division (FIE) Flight Dynamics Laboratory (FI), Air Force Wright Aeronautical

Laboratories (AFWAL), Wright-Patterson Air Force Base, Ohio, under Project

2402, Vehicle Equipment Technology, Task 240203, "Aerospace Vehicle Recovery

and Escape Subsystems," Work Unit 24020336, "Escape Concepts Synthesis."

The work reported herein was performed during the period 1 Mar 1982 to

1 Dec 1982 by the authors Mr Lanny A. Jines and Mr Edward 0. Roberts. The

report was released by the authors in September 1983.
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SECTION I

INTRODUCTION

1. BACKGROUND

The operational performance envelope of current escape systems is deficient with

respect to the operational flight envelope of current Air Force inventory aircraft.

Figure 1 presents a typical comparison of a current technology fighter aircraft and

the ACES-I escape system performance envelope which identifies the limited safe

escape envelope. "Statistical analysis of crew survival data, following ejection

from an aircraft, indicates a declining trend in survival rate and therefore

establishes a critical need for advancement of emergency crew escape technology"

(Reference 1). From 1949 through the end of 1980 the Air Force has recorded 4626

emergency ejections in non-combat operations (Table 1). Examination of the period

from 1971 to 1975 yields a survival rate of 82%. However, the most recent period

from 1976 through 1980 shows a significant decline for the survival rate (Figure 2).

The survival rate of 75% for this period was a full 7% below the total average from

1949 and 2% below the previous worst 5 year average (1949-1953). Careful analysis of

these statistical trends is contained in Reference 1 of this report. Detailed

analysis of these statistics indicates that ejecting outside the escape system's

capability (out-of-envelope) is the reason for the declining survival rate (Table 2).

Of the 91 fatal ejections, 73% (66) were out of the envelope, either in the low

altitude (61 cases) or high speed (5 cases) regimes. Identified by the analysis are

three major factors:

(1) "the percentage of fatalities resulting from equipment failure is

decreasing,

(2) the aircraft are being flown in unconventional flight maneuvers beyond the

escape system's performance envelope, and

(3) the decision to eject is often being delayed until the aircraft is outside

the escape system's low altitude capability."

["1
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The expansion of the ejection seat performance envelope in the low altitude adverse

attitude escape environment represents a life saving benefit to the aircrews and Air
Force mission.

The key to achieving increased survival rates during operational emergency escape

is the development of an ejection seat flight control system in close association

with increased and controllable propulsion energy. The control system would

incorporate advanced state sensors, microprocessor(s), and controllable energy

sources for i'?Iectable propulsiye thrust. The tasks to be accomplished by the

controller include: regulator control (i.e., elimination of seat rotational rates),

variation of trim attitudes to control the direction of acceleration loads, guidance

control (i.e., steering for terrain avoidance), timing of component operation,

selection of active components and the selection of propulsive energies to suit the

escape situation. This approach to improve escape performance represents an energy

management concept which will allow positive modification of states during emergency

escape to provide successful recovery of air crewmembers under the more severe flight

maneuver environments anticipated for the next generation of aircraft.

2. SCOPE

Reference 1 (p. 31) identifies various parametric analyses which should be

conducted to obtain a greater understanding of the behavior of an ejection seat

during flight: "Sensitivity to weight variations, center of gravity variations,

(c.g.) inertial properties, and temperature extremes must be evaluated. Timing, sink

rate, roll, pitch and yaw rate effects must also be determined. Modified catapult

performance, and variation of rocket thrust patterns as they influence the normal

performance of the ejection seat, must be investigated." The effort documented by

this report addresses some of the issues by computing the performance of both

uncontrolled and controlled ejection seats with respect to trajectory and thrust

requirements. The computer input parameters selected for variation are weight, pitch

angle, roll angle, vertical velocity, altitude, rocket impulse, and the shape of the

rocket thrust vs time curve. The computer output results were evaluated in terms of

trajectory (altitude vs downrange distance), tail clearance, maximum achieved

altitude, and ejection seat attitude at thrust vector rocket burnout.

* 2
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SECTION II

SAFEST TRAJECTORY SIMULATION

In order to examine the effects of thrust and burn duration of different size

rockets and to determine the impact on escape system trajectories, the SAFEST

*Computer Program was chosen as the simulation model. SAFEST is an acronym for

- Simulation and Analysis of In-Flight Escape System Techniques. SAFEST is a

six-degree-of-freedom computer program that simulates an open ejection seat from the

* initial catapult ignition in the aircraft through parachute steady state recovery.

SAFEST is the result of many years of technical effort and the specific details of

its development and capabilities can be found in References 2 and 6.

The SAFEST simulation capability of the ACES-I ejection seat had been developed

for a previous effort and, since it is the best available detailed representation of

an advanced ejection seat, the decision was made to use it for this effort. The

program data inputs were assembled and used which represent an ACES-TI ejection seat

configuration utilized in a close-air support attack aircraft.

The computer simulation requires an input data package of individual inputs of

weight, and moments of inertia of each component that comprise the seat/occupant

combination. The specific components used in this effort are listed below:

a) Pilot (5th or 95th percentile sizes)

b) Empty Seat

c) Rocket Propellant

d) Drogue Chute

e) Recovery Parachute

f) Survival Kit (empty, 26 lbs, 40 lbs)

Each of these components were measured individually or in various combinations to

obtain their weight, c.g. position, three cardinal moments of inertia and three cross

product moments of inertia as shown in Table 3.

Figure 4 is a plot showing the combined center of gravity positions for two dummy

sizes and three survival kit configurations. Two live subjects were also measured in

3
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the inertia facility for comparison with the dummy data. The results show a very

close agreement between the two sets of data, especially the 5th percentile dummy and

the small subject. The small subject weighed 142.2 lbs and the large subject 215.0

lbs.

The trajectory simulation using SAFEST was limited to three-degrees-of-freedom to

simplify the analysis. The rotational motion of the seat was frozen and the seat was

only allowed to vary in the three translational directions. By not allowing the seat

to pitch, roll or yaw it assumes that the seat is completely stable, the rocket

thrust vector is fixed in relation to the center of gravity, and the rocket energy is

used to change translational motion only. The stability aspects of the seat are

addressed in Section III and V.

4
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SECTION III

EASIEST COMPUTER SIMULATION

1. COMPUTER PROGRAM

The EASY And SAFEST Integration for the Evaluation of Stability and Trajectory

(EASIEST) computer program, documented in References 4, 5, and 6, was utilized to

investigate ejection seat stability performance in which selected rocket thrust

profiles were simulated. Reference 4 provides a brief overview of the EASIEST

computer program with identification of its two major subprograms, the model

*" . generation program and analysis program. Additionally, example results are presented

in Reference 4. References 5 and 6 represent the user's manual for the EASIEST

program.

2. MODEL GENERATION FILE

The model generation program assembles a FORTRAN model of the escape system

described by the user in the model description input file. The ejection seat model

used during this investigation is the simulated ACES-I1 ejection seat modified to

incorporate a simplified thrust vector control system. Appendix N of Reference 5

contains the complete model generation file of command statements and output diagrams

for verification of the FORTRAN description (see pages 657 through 662). For the

readers general understanding the escape system computer generated schematic diagram

is provided in Figure 5 of this report. The alphabetic characters enclosed in the

rectangular boxes identify modeled components of the ejection seat as well as the

-. added components for a DART Stabilization System and an Aerodynamic Plate

Stabilization System simulation.

3. ANALYSIS FILE

The analysis program is invoked following completion of the model generation

program. The user supplies escape system input data and analysis directives in the

analysis input file whereby the analysis program calls up the relocatable binaries

from the model generation program, mates input files of data to the components, and

executes the program producing the desired output data in numerical and printer plot

form. Reference 5 Appendix N contains the initial analysis input file utilized for

this study (see pages 663 through 665). The output is also shown in the same

reference (page 666 through 675).

i .- 5
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SECTION IV

TRAJECTORY/THRUST REQUIREMENTS ANALYSIS

1. TRAJECTORY CRITERIA

The analytical simulation was used to generate trajectory criteria for the

design and analysis of future advanced ejection seat systems. The propulsion system

and its specific thrust and time characteristics were varied to generate different

trajectories to develop the criteria information. The following paragraphs contain

*' this information which is certainly not all inclusive, but it is sufficient to

develop trends and guidelines for a more detailed design analysis.

* 2. TAIL CLEARANCE

The SAFEST Computer Program was used to conduct a tail clearance trajectory

* analysis for various rocket thrust levels to show the impact 'on the seat/man

trajectory. Figures 7, 8 and 9 are the tail clearance results for the three

airspeeds of 250, 450, and 600 KEAS. As can be seen from these figures the aircraft

velocity has a considerable affect on the tail clearance trajectory. For an airspeed

up to 450 KEAS and an unaccelerated aircraft condition, the catapult energy alone is

sufficient to clear the tail and provide a separation velocity between the seat and

the aircraft. The 200 lb-sec to 1000 lb-sec impulse curves for the escape rocket are

all for a 0.4 second burn time with constant thrust levels from 500 lbs to 2500 lbs.

Except for the ACES-II case, the seat was not allowed to rotate and the thrust level

was directed in an earth axis vertical direction. The configuration using a large

subject (95%) and a heavy kit (40 lbs) was chosen for the simulation since it is

considered the worst case. A lighter kit and smaller subject would yield higher

trajectories. The relative position of a close-air support aircraft tail is shown in

all three plots to demonstrate the different thrust level capabilities and the

available clearance. The ACES-II trajectory is also shown on these plots to allow

comparison with a current capability.

These plots can be used as criteria for developing minimum thrust requirements in

the vertical axis for various airspeed when the ejection seat has a steering

capability. As long as the steering rocket has a minimum thrust level in the

vertical axis to clear the tail then the remaining energy can be used to provide

terrain clearance and acceleration control.

~~.6
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3. INFLUENCE OF INERTIA

Table 4 is the result of varying the pitch axis inertia by plus or minus 10

percent of a 95th percentile seat/man combination. The pitch axis inertia was the

only inertia modified since it is the only one which would influence a three degree

pitch plane simulation. Of course, the rotational motion of the seat for these

* computer runs was allowed to vary with the applied forces. In the previous cases

they were not allowed to vary. The analysis of Table 4 indicates that the influence

of changing the inertia by 10 percent does not significantly affect the recovery

altitude. Very little difference is shown over the applicable speed range.

Therefore, small changes (+10%) in pitch inertia should not be considered a

significant factor in the trajectory analysis.

*" 4. DIVE ANGLE

Figure 10 shows the result of altitude required for variou's dive angles in

plotting the data from Tables 5, 6, 7 and 8. Dive angle is the flight path angle

below the horizon and angle of attack is zero. The only data presented are for the

95th percentile heavy kit configuration because it represents the worst case. The

altitude required includes the time from catapult ignition to parachute recovery.

These curves are strictly for the simulated ACES-II ejection seat and do not include

". any trajectory modification capability.

5. SINK RATE

Presented in Figure 11 is the altitude required for various aircraft sink rates at

ejection for the ACES-II ejection seat. Sink rate is defined as the vertical

component of the velocity vector with a zero angle-of-attack. The flight path angle

is a result of the desired angle rate and total velocity vector. The 250 KEAS

aircraft velocity is the nominal crossover condition for the change from Mode 1 and

Mode 2 and this velocity was chosen to show the effect of sink rate. Again the 95th

percentile-heavy kit condition was selected because it requires the most altitude for

recovery. Figure 11 shows that the Mode 1 sequence has the better performance in the

recovery attempt.

6. ROLL ANGLE PERFORMANCE

To investigate roll performance the six-degree-of-freedom simulation capability

using SAFEST was used. Figure 12 is a plot of altitude required for various aircraft

roll angles at ejection. Two velocity conditions are plotted, 0 and 250 KEAS, to

7
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show how roll angle effects altitude required at both conditions. For the 0 KEAS

cases the 5th percentile becomes the worst case for roll angles beyond 90 degrees.

At 250 KEAS the difference between 5th and 95th is not as significant. These curves

are again for the ACES-II ejection seat where the seat was allowed to rotate in a

normal manner in all directions.

7. TERRAIN CLEARANCE

The next major trajectory problem after aircraft tail clearance is terrain

clearance. Current escape systems do not have an intelligence or performance

capability to conduct any maneuvering to minimize the loss in vertical altitude after

ejection. A number of pilot losses in previous accidents have occurred where a few

extra feet in altitude would have prevented a fatality. This section looks at

terrain clearance for various escape rocket thrust levels and wings level aircraft

dive angles at a zero-angle-of-attack.

Trajectories were run using SAFEST for the rocket thrust levels and burn time

durations as shown in Tables 9 & 10. The two tables represent data at the two

airspeeds of 200 and 450 KEAS. The thrust profiles were constant level thrusts over

the specified time duration and they combine to yield impulses of 2000, 4000, 6000

and 8000 lb-sec. These impulses were chosen to represent realistic values that could

-* be incorporated in an advanced escape propulsion system and yield trajectory data for

a range of conditions. These tables present the altitude of the pilot at parachute

recovery as a function of dive angles from 0 to 90 degrees. Some of the trajectories

result in a required altitude below the initiation point and it is recorded as the

number in the parenthesis. The negative numbers represent a recovery position at an

* altitude above the initial starting altitude at ejection. The rocket thrust

application point on the seat was 8 inches below, directed upward near the nominal

L. center-of-gravity. Since the seat was not allowed to rotate, this meant that the
. thrust was always directed in a vertical direction and it represents the ideal case

_in terms of trajectory modification.F Tables 9 and 10 also tabulate the results using the ACES-Il rocket catapult also

directed vertically through the center-of-gravity. Comparisons can be made in these

tables to show the differences in thrust performance. Figure 13 and 14 are plots ofK the data from the Tables 9 and 10 for the 5000 lb and ACES-Il data. For the constant

*8
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.

level thrust it can be seen that beyond a certain point in time a longer burn time

does not affect the minimum point in the trajectory. For the 200 KEAS cases the 1.2

and 1.6 burn times do not provide any better performance than the 0.8 time. Since

*' the vertical velocities are higher in the 450 KEAS cases it takes a considerably

longer time to stop the sink velocity. Reducing the vertical velocity is the key to

providing a maximum terrain clearance.

Figure 15 dramatically shows the effect of the longer burn times on the

trajectory. The 0.6 second burn time provides a recovery point above the low point

in the trajectory during rocket burn and, therefore, would be the optimum performarce

for this particular case. The 0.8 second burn time does not influence the low point

in the trajectory but it does yield a higher recovery altitude. This figure is only

for one case and different velocities and dive angles would require either a higher

or lower burn time.

By making a comparison between Tables 9 & 10 of the altitude requirements for the

same impulse levels but different thrust profiles it can be seen that the higher

thrust levels with the shorter burn time provide the better performance. The higher

thrust levels initially reduce the vertical velocity faster which results in a lower

required recovery altitude.

In providing for terrain clearance it would appear that the reduction in the

vertical velocity with as high a level of vertical thrust as possible is the best

solution. Human tolerance is a factor in determining the maximum thrust level and

must be considered in providing the high thrust levels.

9
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SECTION V

VECTORED THRUST ANALYSIS

1. APPROACH

For simulated ejection with a velocity of 800 fps and altitude of 900 feet mean

sea level as initial conditions, the analysis conducted during this investigation

involves the thrust vs time rocket curves tabulated as input in TABLE 11 and shown in

Figure 16 through 59. There are forty four (44) thrust schedules consisting of the

baseline case and forty three (43) subsequent variations. Each thrust curve was

input into the EASIEST computer program Analysis File of input data utilized by both

EASIEST ejection seat Model File (Model 1 and Model 2).

The Baseline Case, see Figure 20, represents a Talley CKU-5 "rocket catapult"

sustainer thrust profile fired at a temperature of 740F. This curve imparts 1031.4

lbf-sec of impulse to the ACES-Il ejection seat at that temperature. The Baseline

Case as well as Cases 1 through 31, see Figure 20 through 47, all have a burning time

of 0.350 seconds (350 milliseconds). Cases 1 through 16, Figures 17 through 32, were

selected without concern for the amount of impulse imparted to the escape system.

Note that among the baseline case and Cases 1 through 16, there occurs a

coincidence: Case 5 and Case 12 of different thrust vs time curve shapes produce

approximately the same total impulse of 1247.5 lbf-sec and 1248.8 lbf-sec

respectively. Additionally, Cases 7 and 16 yielded approximately the same total

impulse, i.e. 2182.5 lbf-sec and 2183.8 lbf-sec respectively. These thrust time

schedules provide an initial investigation into establishing discernable effects of

shape change upon the sustainer rocket driving a thrust vector theta-biased,

pitch-rate feedback control system operating on the primary sustainer energy source

of the ejection seat.

Cases 17 through 31, See Figures 33 through 47, retain the total burn time of

.350 seconds but incorporate the three simple shapes of a rectangle (Figure 33

through 37), a triangle (Figures 38 through 42), and a combination rectangle with a

triangle superimposed (Figures 43 through 47). These cases generate impulses of

1000, 1500, 2000, 2500, and 3000 lbf-sec achievable by each shape. The maximum

achieved thrust level varies among the cases in this series. For example, Case 17

(Figure 33), Case 22 (Figure 38) and Case 27 (Figure 43) all have different peak

10
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thrusts of 2857 lbf, 5715 lbf, and 4214 lbf respectively, however all three yield

1000 lbf-sec of impulse. From Table 11 note that the TVC rocket burnout occurs at

.566 seconds, into the simulation. This corresponds to a catapult ignition time of

0.001 seconds and the subsequent sustainer rocket ignition at 0.216 seconds.

The remaining simulation Cases 32 through 42 (Figure 48 through 58) and Case 43

(Figure 59) represent a departure from maintaining the 350 millisecond burn time of

the rocket curves. The results of Cases 1 through 31 showed sufficient control

capability for. the TVC rocket thrust vs time curves yielding 2000 lbf-sec and 2500

lbf-sec impulses. Additional discussion of this result is contained in paragraph 2

of this section. As a result, Cases 32 through 36 (Figures 48 through 52) and Cases

37 through 43 (Figures 53 through 58) were executed to provide respectively,
investigation of the same (2000 lbf-sec and 2500 lbf-sec) rocket impulse with

extended burn time schedules. Note that Case 43 (Figure 58) provides 2500 lbf-sec* impulse over 1.6 seconds following ignition at .216 seconds. The resulting burnout

time of 1.816 seconds into the trajectory simulation time corresponds to the

preprogrammed recovery parachute line stretch event.

2. RESULTS

Table 11 contains the summarized computer results from the execution of Model 1

and Model 2 using the appropriate Analysis files incorporating the various thrust vs
time curves for the simulated thrust vector control system.

For Model One (1) which incorporates the TVC, Aero Surfaces, and a Dart

Stabilization system, Figure 60 contains the computed seat pitch angle at sustainer
rocket burnout time plotted against the total TVC sustainer rocket impulse for the

baseline case and Cases 1 through 16. Similarly the results for Model Two (2) are

shown in Figure 61. The scatter of data points precludes reasonable interpretation
of these results. Plotting the seat pitch angle 0 at time or rocket burnout for each

similar shaped curve yields useful trend information. Figures 62, 63, and 64 for

Model I and Figure 65, 66 and 67 for Model 2 display seat pitch angle vs impulse.

Figure 68 and 69 presents the maximum trajectory altitude achieved in the baseline

case and Cases 1 through 16 plotted against the total impulse, for Model 1 and Model

2 respectively. Figure 70 through 75 presents the same data but only cases of

similar shaped thrust vs time curves appear on each figure (i.e., Figure 70 (Model 1)

11
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and Figure 74 (Model 2) exhibits the results of Cases 5 through 10, and Figure 72

(Model 1) and Figure 75 (Model 2), displays the results of cases 11 through 16).

Closer examination of Figures 60, 61, 68 and 69 for the achieved results of Cases

5 and 12 as well as Cases 7 and 16 shows variation of seat pitch angles and maximum

altitudes for each model (1 and 2) using approximately the same total impulse

respectively. These results show initial dependence upon shape of the thrust vs time

*'-. curve. Cases 17 through 31 were then added to the selected thrust vs time curves for

a more in-depth investigation of performance results at given impulse levels but

under different shape thrust profiles.

Table 11 continues with Cases 17 through 31 output results for Model 1 and Model

2. Figures 76 and 77 present seat pitch angle 0 in degrees for Models 1 and 2

respectively for this series of cases. Figures 78, 79, and 80 for Model 2 show the

same results but plotted for similar shape curves respectively. Figures 84 (Model 1)

. and 85 (Model 2) present the maximum achieved altitudes for Cases 17 through 31.

Figures 86, 87, and 88 for Model 1 and Figures 89, 90, and 91 for Model 2 show the
altitude results for each individual thrust vs time curve shape. Reviewing Figures

76, 77, 84, and 85, the dependence of the pitch angle 0 and maximum altitude upon

impulse is noted for the range of 2000 to 3000 lbf-sec impulse.
.-. f,

The results of Cases 32 through 43 for both Model 1 and Model 2 are shown in

Figures 92 through 95. This series of computer runs resulted from the performance

sensitivity to thrust vs time curve shape previously shown for TVC rocket thrust

impulses at 200 lbf-sec and 2500 lbf-sec. For this series of simulations the burning
time of the TVC rocket was gradually increased, with thrust levels decreased

appropriately, until a maximum burn time of 1.6 seconds was achieved. This burn time

resulted in a trajectory rocket burn out at 1.816 seconds which corresponds to the

- typical recovery parachute line stretch event for the given initial conditions. For

the extended burn time cases, Model 1 Case 32 achieved the best performance in terms

of pitch 0 and maximum altitude for a 2000 lbf-sec impulse. Case 32 achieved a pitch

0 of 8.4 dLgrees at rocket burn out which compares favorably with the initial 13.751

degrees pitch 0 at time of ejection. Correspondingly Model I Case 32 achieved the

highest altitude for this series of Cases 32 through 35. For the 2500 Ibf-sec

impulse thrust vs time curve Cases 37 through 43, Case 42 achieved the best pitch 0

of 6.2 degrees but it was Case 37 that resulted in the highest trajectory altitude of

80.60 feet where as case 42 achieved only 9.95 feet altitude (see Figures 92 and 93).

12
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Evaluating Figures 94 and 95 for the 2000 lbf-sec impulse cases using Model 2

" we find Case 32 yielding the worst pitch 0 results of 34.3 degrees but the best

altitude of 62.59 feet altitude. Among the higher impulse Cases 37 through 43, with

2500 lbf-sec impulse, Case 37 has the second worse pitch 0 of 32.9 degrees yet

achieves the best altitude of 90.02 feet as shown in Figure 95.

.
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SECTION VI

CONCLUSIONS

" 1. TRAJECTORY/THRUST REQUIREMENTS ANALYSIS

From the simulation and limited analysis shown in Section IV some basic design

factors can be outlined for an advanced ejection seat system.

First, current ACES-II catapult-only thrust levels are close to providing

sufficient tail clearance for a major portion of the applicable aircraft velocities.

A new catapult system which includes some provisions for limiting accelerations to

stay within human tolerance need only provide a small increase in relative velocity

between the seat and the aircraft to assure sufficient tail clearance under straight

and level conditions. The specific design depends on the margin of clearance

desired.

The sustainer rocket must be designed to provide an appropriate level of terrain

clearance performance capability to optimize the trajectory within safe human

tolerance limits. An advanced ejection seat will need conditious data such as the

initial altitude, velocity, and sink rate to determine the specific course of action

to take. Under some conditions of minimum terrain clearance, the rocket will have to

be used to stop the vertical descent velocity regardless of human tolerance limits.

This condition would require the maximum thrust available. The variability of the

pilot size will contribute to the unknown maximum thrust application to stay within

human tolerance unless some type of system is used to compensate for it. The

difference in thrust levels between the 5th and 95th percentile subjects (to stay

within human tolerance in the axis parallel to the spine) can be as high as 1200 lbs.

This is currently 33% of the maximum thrust used on the ACES-II. The maximum thrust

will also depend on the seat weight but it should be between 5,000 and 10,000 lbs.

Small changes in pitch inertia (+10%) did not significantly effect the

trajectory results. However, inertia is an important factor in seat stability.

* 14
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2. VECTORED THRUST ANALYSIS

From the simulation and analysis of 88 computer runs, all for a single set of

initial conditions involving two models of ejection seat stabilization systems, the

-. sensitivity to thrust vs time curve shape has been demonstrated with some basic

design factors noted for future ejection seat systems. The use of sustainer rocket

thrust for pitch attitude control enhances stabilization of the ejection seat at the

expense of maximum altitude for a given thrust. When compared to an actual track

test case of approximately the same initial conditions (759 fps for the test case vs

800 fps for the simulation cases) with the basic CKU-5A thrust time curve, the track

test maximum altitude of 63 feet was measured, 24.78 feet computed for Model 2, and

18.00 feet computed for Model 1. See Table 4 of Reference 3, page 15 for HITECH

program test data summary for test No. 49E-JIF. However, review of Table 2 output

for Models I and 2 reveals that maximum altitudes in the range of 55 to 65 feet are

obtainable with TVC achieving enhanced pitch control for TVC sustainer rocket thrust

vs time curves yielding 60% to 100% increase above the 1031.4 lbf-sec available with

the basic CKU-5A non TVC sustainer rocket. Impulses in the range of 1600 to 2000

lbf-sec delivered to the TVC rocket during the 350 millisecond intervals for Cases 1

through 31 resulted in maximum achieved thrust levels from 5000 lbf to 10000 lbf

depending upon shape i.e., rectangular, triangular, combination rectangular-

triangular. This noteworthy result compares favorably to the results of Section IV.

Attention to Table 11 Cases 3, 4, 9, 10, 20, 21, 25, 26, 30, and 31 involve

impulses in the approximate range of 2500 to 3000 lbf-sec. For these cases

significantly increased maximum altitudes were achieved, i.e., Case 9 for Model 2

produced pitch of 13.5 degrees at rocket burn out with a maximum altitude of 122.98

feet. However Case 9 for Model 1 produced a pitch of 28.89 degrees, far from the

desired initial ejection of 13.75 degrees, but still resulted in an altitude of

129.68 feet. Similar inconsistencies are noted among this group of identified cases.

Investigation of Cases 17 through 21, the rectangular shape curves and Cases 22

through 26, the triangular shape curves, reveal unexpected results of improved

performance in terms of seat pitch and maximum altitude for the triangular shape

curves over the rectangular shape curves. The slower onset rate of thrust with the

triangular shape curves was expected to yield less control toward achieving desired

seat pitch attitude and a resulting lower maximum altitude. This was not the case.

15
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No immediate explanation is readily available from these analyses for results based

upon only one set of initial conditions.

Complete use of thesL results for advanced design of escape systems is not

recommended at this time. Additional parameter investigation to incorporate

evaluation of thrust "build up" or "on set" rates along with shape sensitivity while

measuring accelerations as additional performance indicators is necessary. Such

-L analyses should be addressed for selected altitudes and velocity conditions to

complete meaningful information useful to escape system designers.

16
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Figure 42. Case 26 Thrust vs Time Curve
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TABLE 1

USAF EJECTION EXPERIENCE
(5 YEAR INCREMENTS)

1 JAN 1949 - 31 DEC 1980
NON-COMBAT

TOTAL SURVIVED FATAL

EJECTIONS NO. % NO. %

1949-1953 349 268 77 81 23

1954-1958* 1257 1013 81 244 19

1956-1960* 1305 1098 84 207 16

1961-1965 905 754 83 151 17

1966-1970 845 714 85 131 15

1971-1975 449 368 82 81 18

1976-1980 361 270 75 91 25
* OVERLAP IN DATA

TABLE 2

EJECTION FATALITY CAUSES (1976-1980)

1976 1977 1978 1979 1980 TOTAL

OUT OF ENVELOPE 8 12 12 19 15 66 (73%)

MISSING/DROWNED 2 2 1 1 6 ( 7%)

SYSTEM FAILURE 2 1 1 4 ( 4%)

STRUCK AIRCRAFT 2 1 3 ( 3%)

ESCAPE SYSTEM DAMAGE 1 2 3 (3%)

PARACHUTE ENTANGLEMENT 2 2 ( 2%)

BIRD STRIKE 1 1 ( 1%)

PARACHUTE OPENING SHOCK 1 1 (1%)

OTHER 2 2 1 5 (5%)

TOTAL 14 16 16 25 20 91
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